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Summary

Information was required on the spatial distribution of marine mammals off the eastern coast of Ireland, close
to Dublin. Shipboard surveys took place from June 2019 to April 2021, inclusive. The ship travelled along
pre-determined track lines (transects) and trained observers searched for marine mammals, recording the
species, group size and other relevant information about the animals they detected. A total of 2,741 km were
covered on search effort during 19 surveys. The most frequently detected species was harbour porpoise (135
groups) and this report describes the methods used to obtain the temporal and spatial density of harbour
porpoise in the survey region and presents the results. This report updates a previous report which described
results using data from surveys from June 2019 to September 2020 only.

Spatial modelling methods of Hedley and Buckland (2004) use estimated number of individuals in a small
segment of transect as the response in a model, and location and environmental variables as explanatory
variables. Estimated numbers per segment were obtained using the observed numbers adjusted for detection
probability; line transect distance sampling methods (Buckland et al. 2001) were used to estimate detection
probability.

Distance sampling methods rely on certain assumptions being valid, in particular, certain detection on the
transect line; if this assumption is not valid, then estimates will under-estimate the true abundance. This
may particularly affect estimates for cryptic animals such as harbour porpoise. No corrections for uncertain
detection on the transect line have been applied to the estimates presented here and estimates should be
considered as relative density estimates.



Introduction

A series shipboard surveys were undertaken to collect data in order to estimate marine mammal seasonal
density and abundance in a region off the eastern coast of Ireland, close to Dublin. Nineteen shipboard
surveys took place from June 2019 to April 2021, inclusive.

Line transect distance sampling methods (Buckland et al. 2001) of data collection were used; the ship
travelled along pre-determined transects, or track lines, and trained observers searched for animals, recording
relevant information when an animal, or group of animals, was detected. In this report, data from all surveys
are combined to estimate density and abundance for harbour porpoise (HP; Phocoena phocoena).

The spatial distribution of HP in the survey region was of interest and modelling methods of Hedley and
Buckland (2004) were used to estimate density as a spatially varying surface. The surveys took place
throughout the year (although no surveys took place in February) and so temporal changes were also
considered.

Survey methods

Survey design

The study region (Figure 1a) was approximately 266 km?. Thirteen parallel transects were located with
a random start point in the study region. Transects were oriented east-to-west approximately 2 km apart
(Figure 1b) and in total were 141 - 160 km in length, depending on the survey.

Surveys took place in the following months (inclusive):

o June 2019 to January 2020,

e May 2020 to September 2020,

e December 2010 and January 2021,

o March 2021 and April 2021 (two full surveys each month).

The transects were covered in each survey either in one day or in two consecutive days.
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Figure 1. a) Location of the survey region and b) designed transects.

Search protocol

Observers travelled on a ship; there were two observers and a data recorder. For each detection, the observers
recorded the angle to the detection relative to north, distance (or reticles) to the animal, species, group size
as well as other information. Environmental conditions were also recorded along each transect (e.g., Beaufort
sea state). The environmental conditions recorded at the start of a transect, or section of transect, were used
for that transect, or section. Note that in Chudzinska (2021) mean value from all the recordings of sea state
along each transect was used, hence there are some minor discrepancies between these two reports.

Statistical methods

The count method of Hedley and Buckland (2004) was implemented to model the trend in spatial distribution
for HP. The response variable for spatial modelling was the estimated number of individuals, 7i;, in segment
1 of track line (of length [;) calculated using a Horvitz-Thompson-type estimator (Horvitz and Thompson
1952) as follows:

=y S (1)

where s;,. is the recorded group size for group r in segment ¢ and R; is the number of detected groups in
segment i. The parameter p, is the estimated probability of detection for group r in segment ¢; this was



estimated using distance sampling (DS) methods (Buckland et al. 2001).

Given the difficulty of detecting HP only search effort, and accompanying detections, in Beaufort sea states
< 2 are generally included in the analysis (e.g. Hammond et al. 2017). In this series of surveys, some surveys
were conducted mostly, or entirely, in Beaufort sea states > 2 and would be excluded, hence, for this analysis,
search effort and detections for Beaufort sea states < 3 are included.

Probability of detection

Two critical assumptions of DS methods are that all groups on the transect line (i.e., at zero perpendicular
distance) are detected with certainty and that distance measurements are exact. Given these assumptions,
the distribution of perpendicular distances is used to model how the probability of detection decreases with
increasing distance from the line.

The average probability of detection of animals within a distance w of the line, p, was estimated from
a detection function model fitted to the observed distribution of perpendicular distances. Perpendicular
distances were truncated (at distance w) to avoid a long tail in the detection function. The effect of Beaufort
sea state was incorporated into the detection function model by setting the scale parameter in the model to
be an exponential function of the covariates (Marques and Buckland 2004). To ensure sufficient sample sizes
in each Beaufort sea state levels, levels were combined to create three categories: 0-1, 2 and 3.

Only sightings classed as primary sightings (where this was recorded) were included in the analysis.

Selection of the detection function was described in Chudzinska (2021) and so only basic details are provided
here. No correction was made for uncertain detection on the transect line (i.e. it was assumed that g(0) = 1).

Modelling density of individuals

The estimated number of individual animals per segment along the transect lines were used to estimate
harbour porpoise density in the region of interest; this approach models trend in the spatial distribution and
allows it to vary throughout the region of interest, rather than assuming constant density.

The estimated number of individuals 7; in each segment (with known area) was enumerated, where ¢ indicates
an individual segment, formed the response variable in the spatial density model. Counts are often modelled
using a Poisson distribution, however, these data were likely to be over dispersed (i.e. more variable than
expected for Poisson distributed data), and so an overdispersed Poisson distribution with mean u; was used.
The mean was modelled as a function of location:

i = exp(log(ai) + Bo + sk(Dir) + 51(Xi,Y3))

where

o log(a;) is an offset term (a term with known regression coefficient) that corresponds to the log of the
area of each segment (a; = wl; where w and l; are the truncation distance and length for each segment
1, respectively),

o [ is an intercept,

o si(Dyk) represents one-dimensional smooth terms (e.g. depth) implemented using quadratic B-splines
with flexibility chosen using spatially adaptive smoothing (SALSA) methods (Walker et al. 2010)

o 5(X;,Y;) represents a two-dimensional smooth term of location (determined for each segment i by
X; and Y;). This used radial Gaussian basis functions with flexibility also determined using SALSA
(Walker et al. 2010).



For an overdispersed Poisson, the mean-variance relationship of the Poisson is relaxed so that the mean is
proportional to the variance. This function contains a multiplicative factor (known as an overdispersion
parameter) which was estimated from the data.

The models were fitted using the complex region spatial smoother (CReSS) in a Generalized Estimating
Equations (GEE) framework with SALSA for model selection (Walker et al. 2010) implemented in R (R Core
Team, 2019) using the MRSea package (Scott-Hayward et al. 2018). GEEs allowed for standard errors to be
calculated, taking account of any correlation in the residuals within a specified blocking structure (to provide
robust standard errors). In the presence of residual correlation it is important to use robust standard errors
and corresponding p-values which are adjusted for this correlation when determining statistical significance.
For this reason, robust standard errors were employed and since it was likely that counts of HP within
segments along the transect lines would be correlated (and the model is unlikely to explain this correlation in
full), transects were specified as the blocking structure.

The target length of segments was 2 km but segments naturally varied in length due to changes in Beaufort
sea state and breaks in search effort.

Candidate explanatory variables

The candidate explanatory variables considered were:

 day of year of the survey (called doy) taking a number between 1 and 365 (and 366 for 2020), entering
the model as a 1-dimensional smooth term,

o depth (metres), entering the model as a 1-dimensional smooth term, and
e location, entering the model as a 2-dimensional smooth term.

Depth was obtained from ETOPO1, a 1-arc-minute global relief model (https://www.ngdc.noaa.gov/mgg/
global/global.html). It varied through the survey region from about 5 to 40 metres (Figure 2).

Location was specified by the longitude and latitude of the mid point of the segment and these values were
transformed into a distance (in km) east (z.pos) and north (y.pos), respectively, from a reference point in the
survey region (6.02°W, 53.1°N); these transformed values were used in the model. This was to ensure that a
unit change in the north-south direction was the same as a unit change in the east-west direction. Location is
unlikely to determine HP distribution but acts as a proxy for other, unknown variables that will determine
HP distribution; the aim of the modelling was to describe, rather than explain, density.

Similar to location, day of year is unlikely to determine HP distribution but acts as a proxy for temporal
changes such as sea surface temperature.


https://www.ngdc.noaa.gov/mgg/global/global.html
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Figure 2. Depth values (metres) from ETOPO1 in the survey region.

Model selection

The first step in model selection was to identify if any candidate explanatory variables were collinear and
then, on the basis of remaining explanatory variables, define competing models.

Collinearity occurs when there is a linear association between two explanatory variables and this can lead
to unreliably estimated coeflicients and standard errors for the variables. Generalized variance inflation
factors (GVIFs) were used to quantify the severity of multi-collinearity after first fitting a generalized linear
model with estimated number of animals as the response and depth and location (Fox and Weisberg 2019) as
explanatory variables. As a rule of thumb, values greater than 5 indicate that a variable is collinear with
other variables and any collinear variables were excluded.

A selection procedure within the model fitting function was implemented so that one-dimensional terms in
the model, such as depth, could be linear, smooth or removed (Scott-Hayward et al. 2018).

Diagnostics and model assessment

The predictive power of each model was assessed by fitting the k-fold cross validation score and a fit score
(pseudo-R?), a score measuring the square of the correlation coefficient between the observed values and the
fitted values obtained from the model. This was done in order to assess predictive power in explaining the
response and to select the model which explained the most variation for the response variable.

Diagnostics were performed to ensure model assumptions were valid for the selected model. To assess whether
the residuals were correlated, a runs test for randomness in the residuals was performed. Transect number



(and month/year) were used as the blocking structure for cross-validation. To assess whether the blocking
structure chosen was appropriate, a plot of the lag between residuals within a block and the correlation at
each lag was obtained (an auto correlation function plot).

Predicted values for the survey data were obtained from the selected model and the residuals calculated. The
residuals were plotted spatially and visually examined to determine if there were any patterns - ideally, there
should not be any patterns discernible in residual plots.

Estimating abundance and 95% confidence intervals

Using the selected model, expected abundance was calculated for a grid of points (the prediction grid), with
associated area and known values for the explanatory variables, throughout the region of interest. Total
abundance was estimated by summing predicted abundance over all grid points in the region. The confidence
intervals for total abundance were obtained from a parametric bootstrap procedure available in MRSea
(Scott-Hayward et al. 2018) and implemented as follows. The selected model coefficients were re-sampled from
a multivariate Normal distribution and new predictions obtained for every grid cell using these re-sampled
coefficients. This process was repeated 500 times to build a distribution of abundance estimates for the region
as a whole.

A confidence interval for total abundance needs to take account of the uncertainty both in the detection
function and the spatial surface. Therefore, the coefficient of variation (CV) from the distribution of abundance
estimates was combined with the CV of the detection probability using the delta method to obtain an overall
CV for the abundance estimate. Log-normal confidence intervals (Buckland et al. 2001) were then obtained
for each survey abundance estimate.

A similar parametric bootstrap procedure was used to assess the variation in the estimated density surfaces.
A CV was obtained from the distribution of density estimates for each grid cell for each survey. The average
CV (over all surveys) was then obtained for each grid cell. This surface did not include detection probability
uncertainty.

Results

Survey effort and number of detections

Nineteen monthly surveys were conducted, contributing to a total of nearly 2,213 km of survey effort (Table
1) in Beaufort sea state < 3. A total of 128 groups were detected; the number of groups detected per survey
was generally low except for surveys in November 2019, late March 2021 and early April 2021 when 26, 15
and 34 groups, respectively, were detected.

Table 1. Summary of search effort (km) and number of harbour porpoise groups detected in Beaufort sea
state < 3 by survey. (The number of groups are not truncated by truncation distance, w.)

Survey Year Month Day Effort Groups
1 2019 06 24 135 3
2 2019 07 27 106.5 1
3 2019 08 27 84.54 1
4 2019 09 22 145.3 3
5 2019 10 26 89.22 0
6 2019 11 06 159.5 26
7 2019 12 16 113 1
8 2020 01 23 150.6 8
9 2020 05 26 143.2 5

10 2020 06 25 120.7 3



Survey Year Month Day Effort Groups

11 2020 07 13 121.2 3
12 2020 08 27 123.5 2
13 2020 09 07 65.87 7
14 2020 12 06 73.23 2
15 2021 01 25 96.59 2
16 2021 03 04 61.46 2
17 2021 03 20 143.7 15
18 2021 04 14 143.4 34
19 2021 04 26 141.9 10

Probability of detection

The maximum perpendicular distance for HP was 2208 m, however, to avoid a long tail in the detection
function, a truncation of 500 m was used. This left 103 groups (note that in Chudzinska et al. (2021) 101
groups were left after truncation, due to different assignment of Beaufort scale; see Search protocol section).
A hagzard rate key function with Beaufort sea state as a covariate was selected to model detection probability
(Figure 3).
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Figure 3. Average estimated detection function (black line) overlaid onto the scaled perpendicular distance
(metres) distribution. The dots indicate estimated values for each detected group (and associated level of
Beaufort).

The average probability of detection (over all Beaufort levels < 3) was 0.31 (CV=0.26). The estimated
detection probabilities for the different levels of Beaufort sea state were associated with each observed group



(on the basis of the recorded Beaufort for the segment) and eqn 1 used to obtain the estimated number of

individuals per segment.

Model selection

The search effort and estimated number of individuals per segment are shown in Figure 4. The average length
of segments was 1.4 km with minimum length 0.01 km and maximum length 2.99 km.
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Figure 4. a) Search effort (grey lines) and locations where HP groups were detected (black circle). The
area of the circle represents the estimated number of individuals in the segment (i.e. corrected for detection
probability). The maximum estimated number was 31 individuals. b) Estimated density per segment
(individuals/km?); if segments overlapped, the average density was plotted.

The collinerarity of the explanatory variables was assessed; the GVIFs were less than 5 (Table 2) and so all
explanatory variables were considered in the modelling phase.

Table 2. GVIFs for the continuous explanatory variables in the model.

doy

depth

X.pos

Y.pos

1.004

1.026

1.032

1.012

To start with, all explanatory variables were included (denoted by Model 1). Table 3 indicates that depth
was not significant and depth was removed leaving day of year and location (Model 2); Table 4 indicated that

this model was preferred and model was used for prediction.

Table 3 Analysis of variance table indicating the statistical significance of terms in Model 1 using Wald’s



chi-square test: ‘Df’ = degrees of freedom, ‘X2’ = chi-sq test statistic and ‘P(>|Chi|)’ = probability of a
value greater than the test statistic - a p-value.

Table 3: Analysis of ‘Wald statistic’ Table

Df X2 P(>|Chil)
s(depth) 4 5.017 0.2856
s(doy) 6 32.1 1.559¢-05
s(x.pos, y.pos) 2 0.7107 0.7009

Table 4. Analysis of variance table indicating the statistical significance of terms in Model 2 using Wald’s
chi-square test: see Table 3 for a description of table components.

Table 4: Analysis of “Wald statistic’ Table

Df X2 P(>|Chil)
s(doy) 4 11.98 0.01748
s(x.pos, y.pos) 2 0.8722 0.6465

Diagnostics of Model 2 did not indicate any problems (see Appendix).

Density and abundance

An estimate of average abundance was obtained as described above for each survey, using the day of the
year associated with each survey (using first day if surveys was conducted over two consecutive days) (Table
5). These estimates were consistent with the abundance estimates in Chudzinska (2021) obtained using
design-based DS methods.

Table 5. Estimated abundance (number of individual harbour porpoise) and CV for each survey.

Survey Year Month Day Estimated.Abundance CvV

1 2019 06 24 18 0.4814
2 2019 07 27 28 0.432
3 2019 08 27 61 0.4114
4 2019 09 22 85 0.4166
5 2019 10 26 83 0.3946
6 2019 11 06 74 0.3964
7 2019 12 16 30 0.648
8 2020 01 23 40 0.565
9 2020 05 26 46 0.3575
10 2020 06 25 17 0.4947
11 2020 07 13 18 0.4968
12 2020 08 27 62 0.4123
13 2020 09 07 74 0.4161
14 2020 12 06 39 0.54

15 2021 01 25 42 0.5462
16 2021 03 04 90 0.3924
17 2021 03 20 102 0.3959
18 2021 04 14 97 0.396
19 2021 04 26 86 0.3844
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Figure 5. Estimated abundance for each survey (black dots). The vertical black lines indicate the (log-normal)
95% confidence intervals. The grey dashed lines divide different years.

The estimated spatial pattern will be the same for each survey but the density surface will increase, or
decrease, depending on the day of year (see Fig Al, bottom plot). The estimated density for two surveys is
illustrated in Figure 6; an average, overall surveys, is shown in Figure 7. Higher densities were estimated
around the edges of the survey region. The CVs plotted over the prediction grid indicate that uncertainty is
greatest in the regions of highest and lowest density.
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Figure 6. Estimated density of harbour porpoise (individuals per km?) for two survey dates (left) and
coefficient of variation (right). The spatial pattern remains the same for all the surveys but the density scale

will change.
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Figure 7. Estimated density of harbour porpoise (individuals per km?) averaged over all surveys (left) and
average coefficient of variation (right).

Discussion

Harbour porpoise density has been estimated throughout the region of interest using spatial modelling methods.
Estimated counts of harbour porpoise in small sections of track line were modelled as a two-dimensional
function of location and function of time. Depth did not appear to be an important explanatory variable (in
addition to the other variables).

The spatial component of the model was not significant but the estimated density surface indicated that
highest densities occurred around the edges of the survey region, albeit density values did not change
substantially across the surface.

The temporal component of density was an important explanatory variable in the model. The smooth function
for day of year estimated highest densities in March/April and September/October and lowest densities in
June/July (Fig. Al).

Several alternative temporal variables could have been chosen instead of day of year (e.g. month or season).
Day of year was chosen as it allows abundance to be estimated for individual surveys rather than average
abundance for, say, a particular month or season.

The counts of harbour porpoise in segments were corrected for decreased detection away from the transect
line using distance sampling methods. Distance sampling relies on certain detection on the track line. Only
search effort (and associated detections) recorded in Beaufort sea state < 3 were included in the analysis to
satisfy this assumption, nevertheless, this assumption may well not be valid for HP. Hence, the estimated
density may well under-estimate true density.

15



Another key assumption of distance sampling methods is that perpendicular distances are exact and measured
without error. Systematic bias in the measurements can result in over, or under, estimating the detection
probability. For further details see Burt (2020). In addition, a few errors may still be present in search effort
(e.g. confirmation required that observers were on search effort transiting between transects, Fig. 4). If the
search effort is reduced (due to corrections, say), the encounter rate, and hence, density will increase. See
Chudzinska (2021) for a further discussion.
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Appendix: Diagnostics of spatial model

To investigate the selected model various diagnostics were performed. Fit statistics for each model (mean
cross validation score and pseudo R?) indicate that Model 2 had the lowest cross validation score.

Table A1 CV scores for fitted models.

Model CV.score Fit.score
1 3.016 0.02856
2 2.983 0.006813

The diagnostics of the final model were investigated to ensure that the selected model was valid; the diagnostic
plots for this model are as follows:

o Figure A1l shows the position of the fitted knots for the two-dimensional smooth term of location.

o Figure A2 is an auto-correlation function (ACF) showing the correlation in the residuals along the
blocking structure. In this plot the correlation declines to zero as distance increased which indicates
that the blocking structure was appropriate.

e Figure A3 shows the predicted values obtained from the final model for locations recorded in the survey
data. Predictions for the whole of the survey region are shown in the main text.

o Figure A4 shows the residuals from the selected model. This plot did not indicate any systematic
patterns in the residuals which would give cause for concern. The few large residuals coincide with the
large observed values which are very difficult to fit.
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Figure Al. Location of the knots for the two-dimensional term of location in the final model (large green
dots), location of knots in the prediction grid (blue) and grey dots indicate the segments (top plot). Plot
showing the smooth term for day of year (on the scale of the link function) (bottom plot). Tick marks along
the z-axis indicate the days when surveys took place and the vertical grey lines indicate the knot placements.

A runs test was performed to determine if the residuals were correlated (shown below). The p-value associated
with this test did not indicate that the residuals were correlated.

Table A2. Summary output from the Runs Test.

##

## Runs Test - Two sided; Empirical Distribution
#it

## data: residuals(HP.2d0Output$bestModel, type = "pearson")
## Standardized Runs Statistic = -20.515, p-value = 0.448
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Figure A2. Plot of the correlation in the residuals for each block (grey lines). The mean correlation at
each lag is indicated in red. The correlation should decay to zero (as in this case) which indicates that the
correlation between residuals within blocks (transects) reduces as the distance (or lag) between the segments
increases.
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Figure A3. Predicted values (numbers of HP per segment) obtained from the selected model for the recorded
survey data (averaged over observed data records where locations overlap).
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Figure A4. Residuals (difference between the observed number of HP and predicted number) plotted at each
location (averaged over observed data records where locations overlap). The red circles indicate the location
of segments where large numbers of HP (>5 individuals per segment) were estimated.
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